Electricity - Previous Years Questions

Previous Years Questions Notes Important Questions

Electricity - Previous Years Questions

- 1. Define 1 kilowatt hour. [1 mark] [CBSE 2019]
- 2. The values of mA and µA are: [1 mark] [CBSE 2020]
 - 1. 10^{-6} A and 10^{-9} A respectively
 - 2. 10^{-3} A and 10^{-6} A respectively
 - 3. 10^{-3} A and 10^{-9} A respectively
 - 4. 10^{-6} A and 10^{-3} A respectively
- 3. A cylindrical conductor of length 'I' and uniform area of cross-section 'A' has resistance 'R'. Another conductor of length 2.5 I and resistance 0.5 R of the same material has area of cross-section: [1 mark] [CBSE 2020]
 - 1. 5 A
 - 2. 2.5 A
 - 3. 0.5 A
 - 4. 1/5 A
- 4. Define the term electrical resistivity of a material. [1 mark] [CBSE 2019]
- 5. Consider the scale of a voltmeter shown in the diagram and answer the following questions:

- 1. What is the least count of the voltmeter?
- 2. What is the reading shown by the voltmeter?
- 3. If this voltmeter is connected across a resistor of 20 ?, how much current is

flowing through the resistor. **[2 marks] [CBSE 2019]** 6. The values of current (I) flowing through a given resistor (R), for the corresponding values of potential difference (V) across the resistor are as given below :

						*	
V(volts) 0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
I(Amperes0.1)	0.2	0.3	0.4	0.5	0.6	0.8	1.0

Plot a graph between current (I) and potential difference (V) and determine the resistance (R) of the resistor. [2 marks] [CBSE 2018]

7. Show how would you join three resistors each of resistance 9 ? so that the equivalent resistance of the combination is (i) 13.5 ? (ii) 6 ?? [3 marks] [CBSE 2018]

8. a. Write Joule's law of heating.

b. Two lamps, one rated 100 W; 220 V, and the other 60 W; 220 V, are connected in parallel to electric mains supply. Find the current drawn by two bulbs from the line, if the supply voltage is 220 V. [3 marks] [CBSE 2018]

9. a. List the factors on which the resistance of a conductor in the shape of a wire depends.b. Why are metals good conductor of electricity whereas glass is a bad conductor of electricity ?Give reason.

c. Why are alloys commonly used in electrical heating devices? Give reason. [CBSE 2018] [3 Marks]

10. a. Three resistors of resistances R_1 , $R_2 \& R_3$ are connected **(i)** in series , & **(ii)** in parallel. Write expressions for the equivalent resistance of the combination in each case. **b.** Two identical resistors of 12 ? each are connected to a battery of 3 V. Calculate the ratio of the power consumed by the resulting combinations with minimum resistance & maximum resistance. **[CBSE 2019] [5 Marks]**

11. a. Write the relation between resistance & electrical resistivity of the material of a conductor in the shape of a cylinder of length 'I' & area of cross section 'A' . Hence derive the S.I. unit of electrical resistivity.

b. Resistance of a metal wire of length 5 m is 100 ?. If the area of cross section of the wire is **3** $\times 10^{-7}$ m², calculate the resistivity of the metal. **[CBSE 2019] [5 Marks]**

12. a. Two lamps rated 100 W, 220 V& 10 W , 220 V are connected in parallel to 220 V supply , calculate the total current through the circuit.

b. Two resistors x & y of resistances 2 ? & 3 ? respectively are first joined in parallel & then in series . In each case the voltage supplied is 5 V.

(i) Draw circuit diagrams to show the combination of resistors in each case.

(ii) Calculate the voltage across the 3 ? resistor in the series combination of resistors. [CBSE 2020] [5 Marks]

13. a. State ohm's law.

b. How is an ammeter connected in an electric circuit?

c. The power of a lamp is 100 W. Find the energy consumed by it in 1 minute.

d. A wire of resistance 5 ? is bent in the form of a closed circle. Find the resistance between two points at the ends of any diameter of the circle. **[5 marks] [CBSE 2020**]